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Abstract— The integration of DNA methylation data with
a Whole Slide Image (WSI) offers significant potential for
enhancing the diagnostic precision of central nervous sys-
tem (CNS) tumor classification in neuropathology. While
existing approaches typically integrate encoded omic data
with histology at either an early or late fusion stage, the
potential of reintroducing omic data through dual fusion
remains unexplored. In this paper, we propose the use
of omic embeddings during early and late fusion to cap-
ture complementary information from local (patch-level)
to global (slide-level) interactions, boosting performance
through multimodal integration. In the early fusion stage,
omic embeddings are projected onto WSI patches in latent-
space, which generates embeddings that encapsulate per-
patch molecular and morphological insights. This effec-
tively incorporates omic information into the spatial repre-
sentation of the WSI. These embeddings are then refined
with a Multiple Instance Learning gated attention mech-
anism which attends to diagnostic patches. In the late
fusion stage, we reintroduce the omic data by fusing it
with slide-level omic-WSI embeddings using a Multimodal
Outer Arithmetic Block (MOAB), which richly intermingles
features from both modalities, capturing their correlations
and complementarity. We demonstrate accurate CNS tumor
subtyping across 20 fine-grained subtypes and validate
our approach on benchmark datasets, achieving improved
survival prediction on TCGA-BLCA and competitive perfor-
mance on TCGA-BRCA compared to state-of-the-art meth-
ods. This dual fusion strategy enhances interpretability
and classification performance, highlighting its potential
for clinical diagnostics.

Index Terms— Multimodal Deep Learning, Dual Fusion,
Digital Pathology, Omics, Survival Prediction
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EPIGENETICS describes a raft of molecular mechanisms
which affect gene expression without changing the DNA

sequence itself. DNA methylation is an epigenetic process
where methyl groups are added to specific sites on DNA
molecules, typically at cytosine bases followed by guanine
(CpG sites) [1]. Such a process often leads to gene silencing
or reduced gene expression by preventing transcription factors
from binding to DNA, thereby inhibiting gene activation,
but affects gene expression in many complex ways. The
DNA methylation landscape of a cell is dependent on its
developmental course and function, and this landscape can
be grossly disrupted in the setting of cancer. In central
nervous system (CNS) tumors, DNA methylation patterns
offer valuable insights, enabling the differentiation of tumor
subtypes, prediction of clinical outcomes, and guidance on
treatment strategies [2]. Diagnosis solely based on the Whole
Slide Image (WSI) can be challenging due to the overlapping
appearance of different tumor subtypes, resulting in high inter-
observer variability [3].

Given the aggressive nature of malignant CNS tumors and
their associated poor survival rates, there is a critical need
to improve diagnostic precision [4], expedite diagnostic time-
frames and identify targets for future personalized treatments.
Importantly, evaluation of digitized WSI is becoming increas-
ingly utilized in these clinical diagnostic pathways. Incorpo-
rating DNA methylation profiling for diagnosis, one study in
pediatric patients demonstrated altered subtype classifications
in 35% of cases, potentially impacting treatment decisions for
4% of pediatric patients [5], while another study in an adult
population showed diagnosis was changed in 25%, refined in
4% and confirmed in 25% of cases [6]. This demand has driven
the development of CNS tumor classifiers based on DNA
methylation array data, providing significant advancements in
neuropathology [3]. The World Health Organization (WHO)
has also responded by incorporating molecular profiling along-
side traditional histology into the latest CNS tumor classifi-
cation guidelines, which defines 40 tumor types and subtypes
based on key molecular characteristics [7]. Such findings have
inspired further research into automated integrative molecular
morphology classification systems using artificial intelligence
(AI) algorithms, including machine learning (ML) and deep
learning (DL) approaches, to improve tumor diagnosis and
prognosis [3], [8]–[13].
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Unimodal Approaches. In the single modality domain,
Capper et al. [9] pioneered a methylation-based classification
system on 2801 CNS tumor samples using a ML approach
[9]. For each CNS tumor subtype included in the classifier,
also known as the methylation class, the classifier generated
a predicted probability (calibrated score) that summed to 1
[14], with tumors with a score below 0.3 classified as “no
match”. Capper’s method now serves as an essential aid in
the routine diagnostic workup of CNS tumors [3]. Hwang
et al. [15] have developed an image-based DL model using
DNA methylation data to predict the origin of cancers of
unknown primary (CUPs). By employing a vision transformer
to organ-specific DNA methylation images, their approach
shows significant potential for enhancing CUP diagnosis and
informing treatment strategies. DNA methylation profiling not
only aids in precise classification but also supports surgi-
cal strategies specific to CNS tumors, improving surgical
outcomes and overall patient care [4]. Djirackor et al. [4]
utilize ML algorithms to classify brain tumors in real-time by
taking the DNA methylation data of a new tumor sample and
comparing it to a database of known methylation signatures,
assigning a classification based on the closest match. This
allows for fast intraoperative decision-making by providing
molecular insights during surgery.

Multimodal Approaches. In the multimodal domain,
Hoang et al. [12] developed “Deploy”, a DL model de-
signed to predict DNA methylation beta values from WSIs.
Additionally, Zheng et al. [16] demonstrated that classical
ML algorithms can link DNA methylation profiles of cancer
samples with morphometric features from WSIs, showing
improved model performance when genes are grouped into
methylation clusters. Sturm et al. [17] explore the use of a
multiomic approach — integrating genomics, transcriptomics,
and epigenomics data — to improve the diagnostic accuracy of
pediatric brain tumors, which are often challenging to classify
due to overlapping histological features. However, few studies
[12] have combined epigenetic data with WSIs, primarily due
to the significant data size and complexity of both modal-
ities, which require extensive preprocessing and developing
advanced fusion techniques to address their heterogeneity.

Multimodal DL approaches combining histology and omic
data for improved survival prediction have gained considerable
attention in recent years [8], [10], [11], [13], [18]–[25]. Several
studies [10], [13], [22], [26] have highlighted the value of
different fusion stages (early or late), particularly emphasizing
early fusion for its ability to create an explainable framework
from heterogeneous data. However, Zhang et al. [20] argue that
early or late fusion methods can partially overlook modality-
specific information, potentially leading to a decline in quan-
titative or qualitative performance. Accordingly, they propose
a prototypical information bottleneck framework to maintain
modality-specific information while simultaneously reducing
redundancy. Furthermore, a joint distribution of feature em-
beddings is used to calculate the mutual information between
omic and WSI modalities.

Despite the promising performance of multimodal
approaches in medical diagnostics, significant challenges
remain in effectively integrating and analyzing diverse data

types, particularly in the context of CNS tumor subtyping.
Our assessment of existing methods reveals three key gaps:

1) Limitations of WSI-only diagnosis: While WSI serves
as a primary diagnostic tool for pathologists, accurately identi-
fying fine-grained tumor subtypes based on morphology alone
is challenging due to visual feature overlap among CNS sub-
types. This similarity increases the risk of including irrelevant
tumor regions and highlights the need for complementary data
sources to achieve more precise subtyping [3].

2) Shortcomings of DNA methylation classification: DNA
methylation classifiers have demonstrated high accuracy in
tumor subtyping, but they lack the ability to connect this
accuracy to specific regions within WSIs. The main limitation
is that these classifiers focus solely on DNA methylation pro-
files without considering the spatial context provided by WSIs.
This limits their capacity to capture how epigenetic patterns
contribute to the morphological characteristics observed in
specific regions, ultimately reducing the interpretability and
comprehensive understanding that could be achieved through
integration with WSI data.

3) Scarcity of integrative models for CNS tumor subtyp-
ing: This challenge is particularly acute in the context of cen-
tral nervous system tumors, where the inherent heterogeneity
and large size of both DNA methylation arrays (typically 850k
one-dimensional vectors) and WSIs (represented with multi-
dimensional matrices up to 150k x 150k pixels) have received
limited attention. The lack of effective multimodal fusion
methods in this domain presents an opportunity to leverage
the powerful discriminative capacity of DNA methylation data
to improve subtyping and enhance the clinical translation of
these advanced imaging and molecular techniques.

A. Contributions

Addressing these challenges, we propose a novel dual fusion
approach to improve CNS tumor subtyping by integrating
DNA methylation data with WSIs. We design MOAD-FNet,
a Multimodal Outer Arithmetic Dual Fusion Network that
combines two fusion variants: early fusion focused on cap-
turing essential local interactions and late fusion for broader,
richer cross-modal global context, ultimately providing com-
plementary insights and improving the model’s decision-
making process. This dual fusion strategy provides a compre-
hensive, holistic integration of cross-modal data, maximizing
the strengths of each fusion type. Our main contributions are
as follows:

• We introduce a novel dual fusion network that seamlessly
incorporates both early and late fusion approaches, en-
abling detailed integration of molecular and imaging data
at patch and slide levels.

• Our approach develops a unique Multimodal Outer Arith-
metic Block (MOAB) fusion strategy that enhances cross-
modal feature interaction and improves the model’s abil-
ity to capture complex tumor subtype features.

• Our method, MOAD-FNet, is the first imaging-omics
pipeline to leverage the NHNN BRAIN UK dataset,
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demonstrating exceptional performance in brain tumor
subtyping. Extensive ablation studies on TCGA datasets
validate its robustness, achieving state-of-the-art survival
prediction on the BLCA dataset and on par results
on the BRCA dataset, showcasing its versatility across
multimodal oncology tasks.

We argue that using a late fusion variant alone would capture
only global interactions between the WSI level label and epige-
netic data, lacking the interpretability needed for accurate sub-
typing [13], [27]. On the other hand, an early fusion approach
alone would focus exclusively on local interactions, neglecting
the broader relationships between modalities [27], which we
confirm with extensive experimentation. Our proposed dual
fusion framework, MOAD-FNet, addresses these limitations
by combining early and late fusion strategies, creating a
new approach that uniquely captures both local and global
interactions across modalities and enhances interpretability
and overall classification accuracy.

Note that, this paper extends our previous conference pa-
per [28] by implementing a dual fusion architecture, work-
ing with three additional imaging-omics datasets, recently
proposed state-of-the-art (SOTA) backbones, and shows how
heatmaps can be generated, providing interpretability.

II. STUDY DESIGN

A. Datasets

The following sections briefly provide an overview of the
datasets used to evaluate MOAD-FNet.

Fig. 2. Distribution of training and testing data points across 20
classes/subtypes. The bar chart illustrates the number of patients allo-
cated to training and testing sets for each class, highlighting the balance
of data used for model development and evaluation.

1) Slide Subtyping - NHNN BRAIN UK Brain Tumor Dataset:
We obtained WSIs and matched DNA methylation data from
the NHNN, University College London Hospital (UCLH)
through the UK Brain Archive Information Network [29]1.
The dataset includes (H&E)-stained WSIs from 1,504 patients,
covering 20 DNA-methylation-based subtypes of high- and
low-grade glial tumors. The data exhibits significant class
imbalance across its 20 subtypes, as shown in Fig. 2. To ensure
a balanced evaluation, we perform 2-fold cross-validation
by splitting the dataset into two equal parts (50%-50%). In
each fold, one part is used for training and the other for

1https://www.southampton.ac.uk/brainuk

testing, ensuring all slides are evaluated while maintaining a
strict separation between the two sets. We report the average
performance across both folds for all metrics. For WSIs,
we used QuPath [30] for tissue segmentation and tiling,
generating 1M patches (4K–10K per slide). For the tissue
methylation profile, we processed raw idat files to extract
DNA methylation CpG sites using the hg38 Illumina array
with EPICv1 annotation, following the workflow in [31]. We
calculated m-Values to quantify methylation levels, producing
a matrix of 850k CpG sites for 1,504 patients. To reduce
features, we applied variance, coefficient of variation (CV),
median absolute deviation, and inter-quartile range, selecting
the 8K most variable CpG sites by intersecting these methods.
We experimented with clustering 4K CpG sites and Random
Forest selection of 10K sites, as suggested in the literature [9],
[31], [32], but 4K reduced performance and 10K showed no
improvement, leading us to select 8K CpG sites.

2) Survival prediction - TCGA Datasets: To showcase
MOAD-FNet’s versatility and compare it with other omic-
WSI fusion methods [8], [10], [13], [22], [33], we evaluate its
performance on The Cancer Genome Atlas (TCGA) datasets
for Bladder Urothelial Carcinoma (BLCA) (n = 359) and
Breast Invasive Carcinoma (BRCA) (n = 869), using the
survival prediction task outlined by Jaume et al. [13]. We
utilized a coupled set of 331 biological pathways derived from
4,999 distinct genes. These genes were grouped into pathways
based on their functional interactions and roles in biological
processes relevant to the BLCA and BRCA datasets.

B. Multimodal Outer Arithmetic Dual Fusion Network

We designed a multimodal fusion framework, shown in
Fig. 1, that integrates omic data and a WSI through combined
early and late fusion stages. Our proposed method, MOAD-
FNet, is aimed at multimodal brain tumor subtyping, and
survival prediction in both lung and breast cancer. In the
following subsections, we highlight key components of the
MOAD-FNet framework.

1) Omic Encoder: To construct the omic encoder, we fol-
lowed the established practice of using a Self-Normalizing
Neural (SNN) [34] consisting of two fully connected layers,
where each layer applies an Exponential Linear Unit (ELU)
activation function followed by Alpha Dropout (0.25). The
SNN compresses the 8K CpG sites into an encoded omic
feature oi ∈ Rdo

do = 256. Note that for fair comparison
with other methods [13], [18], [20], [22], we used the same
encoder tokenizing the genes into a group of pathways.

2) Whole Slide Image Encoder: For a WSI X, we extract a
collection of patches, represented as xi0,xi1, . . . ,xij , where
i represents the patient/slide index and j indicates the patch
index that varies across slides. We extract non-overlapping
patches from tissue areas at a 20× magnification (about 0.5
µm/pixel resolution). Subsequently, we utilized a SOTA image-
only encoder [11] UNI to obtain the patch embeddings eij .
Using UNI fenc(.), we derive a set of low-dimensional patch
embeddings for each patient, where eij = fenc(xij) ∈ Rde

,
de = 1024, serving as input to our pipeline.
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Fig. 1. Overview of the proposed MOAD-FNet framework. Data engineering and encoding for each modality are performed in the preprocessing
block. The early fusion block (top) receives encoded inputs from both modalities, where omic data is concatenated to form a matrix zi,j which is
processed by an MLP encoder that learns a joint mapping, resulting in output pi,j . A gated attention via multiple instance learning (MIL) scores
patch importance providing heatmap interpretability and producing a WSI feature vi. Next, the MOAD-FNet fusion block (bottom) reintroduces omic
features oi alongside the vi feature representation from the early fusion block as input to the MOAB fusion block. This block performs four outer
arithmetic operations to create fusion representations, which are further reduced with fθ before being sent to the final subtyping classifier.

3) Fusion Stages: The fusion scheme is the key contribution
of this work. Our motivation sparks from the enhanced features
obtained from the dense modeling conducted by multimodal
early fusion methods in [10], [13], [22], [26]. Hence, we divide
this subsection into two: early fusion and late fusion.

Early Fusion. Given a matrix of patch embeddings eij and
the omic feature vector oi for patient i, the encoded omic
feature vector is cloned to match the number of patches in
the WSI. This results in a tensor of shape (Ni, do), where Ni

is the number of patches in WSI i, and do is the dimension
of the omic feature. The combined feature set for WSI i is
represented as:

zij = [eij ,oi] (1)

Here, zij ∈ Rde+do represents the concatenated [.] feature
vector for patch j in WSI i, and the resulting shape becomes
(Ni, de + do). Next, a Multilayer Perceptron (MLP) encoder,
denoted as fE , is applied to each concatenated patch embed-
ding and omic feature pair to learn their joint representation:

pij = fE([zij ,oi]) (2)

This operation is performed for all patches j of the ith WSI.
By incorporating omic features oi into patch embeddings via
early fusion, we enrich the representation with complemen-
tary molecular information. Leveraging an Attention-based
Deep Multiple Instance Learning (ABMIL) approach [35], we

capture patch-level discriminative features that synergistically
combine molecular and morphological insights, enabling more
precise identification of critical regions. The resulting embed-
ding is projected to a slide-level representation vi ∈ R256,
dimensionally aligned with the original omic feature oi to
facilitate subsequent late fusion.

Late Fusion, motivated by [13] in modeling the interaction
between omic to histology, histology to omic, and omic to
omic, we mimic a similar behavior by employing our novel
multimodal outer arithmetic fusion block (MOAB) [28] within
a dual fusion approach, marking a new direction in combining
MOAB with dual fusion to enhance modality integration.
MOAB inputs (vi,oi) will be fused through four operations:
outer product, outer division, outer subtraction, and outer addi-
tion. MOAB extracts various interactions while simultaneously
preserving the vi input feature by appending one to each input
embedding when performing the outer product and division
fusion and zero in the case of the outer subtraction and addition
fusion. To simplify this, given the two embeddings vi, oi,
vi ∈ RN×1 and oi ∈ RM×1. Initially, we append a 1 to each
embedding, i.e., vi1 = [1;vi] and oj1 = [1;oj ]. Their outer
product is defined as

(vi1 ⊗ oj1)ij = v1i ∗ o1j , (3)

for i ∈ [1...N + 1] and j ∈ [1...M + 1] yielding a (N + 1)×
(M + 1) matrix that intermingles every element of vi1 with
every element of oj1. The appended 1 in both vi1 and oj1
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ensures the original unimodal features vi and oj appear in
the outer product matrix. Similarly, we define outer division,
addition, and subtraction as

(vi0 ⊕ oj0)ij = v0i + o0j (4)
(vi0 ⊖ oj0)ij = v0i − o0j (5)
(vi1 ⊘ oj1)ij = v1i ÷ (o1j + ϵ) (6)

where ϵ is a small number (set to 1e−10), and vi0 = [0;vi]
and oj0 = [0;oj ].

The four matrices produced by MOAB are concatenated
along the channel dimension to form a multimodal tensor
L ∈ R4×257×257. We hypothesize that channel fusion will
maintain the proximity of closer points and will use fewer
parameters compared to a typical concatenation. By combining
features across the channel dimension, we greatly decrease
dimension by compressing the feature representation from
(257 × 257)4 to (257)2. Following the same parameters in
[28], a 2D convolution layer is subsequently performed to
leverage associated interactions, resulting in a singular con-
densed multimodal feature tensor L∗ ∈ R1×257×257. Last, we
flatten L∗ and apply leaky ReLU followed by a linear predictor
for brain tumor subtyping prediction. MOAB provides simple,
yet effective operations to fuse multimodal data, similar to
[13] but without relying on approximations.

4) Interpretability: Employing ABMIL [18] on the post-
fusion embedding pij enables the visualization of attention
scores, which provide an enriched perspective on the tumor’s
visual and omics characterization. This, in turn, enhances
ABMIL’s capacity to prioritize patches that are biologically
relevant. We define our gated attention computation as follows:

hij = tanh(Wppi,j + bp)⊙ σ(Wgpi,j + bg),

aij =
exp(wThij)∑j
1 exp(w

Thij)
,

vi = fρ

 j∑
j=1

aijhij

 ,

(7)

Here, Wp and Wg are learnable parameters for the in-
put and gating functions, respectively, with bp and bg as
their corresponding biases. The symbol ⊙ denotes element-
wise multiplication, and σ represents the sigmoid activation
function. The gated embedding for patch j in slide i is given
by hij , while aij represents the attention weight for patch j,
normalized across all patches. We leverage aij at inference
to generate the heatmap shown in Fig. 3. To further enhance
our late fusion stage, we weight vi with aij using an MLP
fρ which consists of a linear transformation, an activation
function (ReLU), and dropout. fρ is applied to the pooled
embedding vi increases its representational power, making it a
more refined input for the late fusion stage. This enriched em-
bedding encapsulates a high-level representation of the WSI,
effectively integrating morphological and molecular insights
from the attention mechanism.

III. EXPERIMENTS

A. Performance Metrics

For the subtyping task, we assessed performance utiliz-
ing various metrics: F1-Macro, F1-Micro, Precision, and
Recall/Sensitivity. F1-Macro is a significant metric for our
quantitative analysis as it independently computes the F1 score
for each class and subsequently averages them, assigning equal
weight to each class irrespective of its size, thereby ensuring
that the performance of minority classes is not overwhelmed
by that of majority classes. For the survival prediction task, we
follow the implementations of [13], [20], [22] where survival
analysis is defined as an estimation of the probability of an
event occurring within a given survival time, while accounting
for right-censored data. Censorship status is represented as
c ∈ {0, 1}, where c = 0 denotes an observed event (e.g., death)
and c = 1 indicates the patient’s last known follow-up. In line
with previous work we discretize the time-to-event into non-
overlapping time intervals (ti−1, ti], based on the quartiles of
survival times denoted as yi. This formulation transforms the
problem into a classification task with censorship information,
where each patient is represented by (Llogits, yi, c).

Next, we use the dual fusion embedding generated by
MOAB-FNet, Llogits to predict the discretized bin correspond-
ing to a time interval ti. We define the discrete hazard function
as:

fhazard(yi | Llogits) = σ(yi),

where σ is the sigmoid activation function. Intuitively,
fhazard(yi | Llogits) represents the probability that the patient
experiences the event (e.g., death) during the interval (ti−1, ti].
The discrete survival function is then defined as:

fsurv(yi | Llogits) =

i−1∏
k=1

(1− fhazard(yk | Llogits)) ,

which represents the probability that the patient survives up
to the interval (ti−1, ti]. The Negative Log-Likelihood (NLL)
survival loss is formally defined as:

L
(
{Llogits, y, c}Ntotal

i=1

)
= −

Ntotal∑
i=1

[
ci log

(
fsurv(yi | Llogits)

)
+ (1− ci) log

(
fsurv(yi | Llogits)− 1[yi]

)
+ (1− ci) log

(
fhazard(yi | Llogits)

)]
, (8)

where (Ntotal) is the total number of samples in the dataset,
and (k) corresponds to the total number of discretized labels.

B. Domain-Specific Prior Work and Ablation Studies

To evaluate our method on subtyping and survival prediction
tasks, we replicate and adapt recent SOTA methods by incor-
porating MOAB as a replacement for the fusion technique
initially used in these methods. For the survival prediction
task, we conducted a comparative analysis using a consistent
feature extractor across all modalities, including WSI and
omic data, utilising the recent TCGA ID samples from [13].
We uniformly implemented training hyperparameters and loss
functions across all models displayed in Tables I and III. To
this end, this section is divided into two parts. SOTA baseline
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models detailing unimodal and fusion models employed for
each task, together with a description of the ablation studies
conducted.

1) State-of-the-Art Baseline Models: We evaluate our
approach against SOTA techniques in the unimodal and
multimodal setting for both subtyping and survival prediction
tasks.

Unimodal Subtyping baselines. We utilize MLP and SNN
[34] as baseline models for the DNA methylation data. For
WSIs, we utilize Attention-based Multiple Instance Learning
(ABMIL) [18], which implements gated weighted attention
pooling to determine the importance of patches, as well
as Transformer-based Multiple Instance Learning (TransMIL)
[33] which employs the Nyström attention mechanism to
evaluate correlations among WSI patches. Through rigor-
ous experimentation, we found that ABMIL outperforms the
TransMIL baseline in both performance and computational
efficiency, also noted in [36], making it the preferred baseline
for MOAD-FNet.

Multimodal Subtyping baselines. We adapt Attention
Challenging Multiple Instance Learning (ACMIL) [23] to
work in a multimodal setting. ACMIL is an approach designed
to address overfitting in single-modality WSI classification, by
using multiple attention branches and a composite loss (cross-
entropy + diversity loss) to distribute attention across the WSI.
We also used TransMIL with two late fusion variants, concate-
nation (Cat) and Kronecker product (KP) [33]. Furthermore,
we compare against MCAT [10] and SurvPath [13], both of
which perform multimodal tokenization to extract histology
and biological pathway tokens. MCAT and SurvPath employ
a transformer-based early fusion approach, the concatenate the
resulting vectors. To maintain their architectural consistency,
we opted not to replace concatenation with the MOAB late
fusion block, as their complex architectures could be desta-
bilized by it. However, to test our dual fusion hypothesis we
input our early fusion input representation pij into MCAT
and SurvPath, thus enabling these models to leverage omic-
WSIs embeddings at both the early and late fusion stages.
By comparing the performance of SurvPath and MCAT with
pij to the original implementation (SurvPath* and MCAT*),
we provide evidence that dual fusion outperforms single-stage
fusion methods.

Unimodal Survival baselines. In addition to the unimodal
subtyping baselines, we employ Sparse-MLP [13], which
tokenizes transcriptomics into biological pathway tokens en-
coding specific cellular functions for the downstream analysis.

Multimodal Survival baselines. We integrated MOAD-
FNet across the same models used for subtyping tasks, adding
the prototypical information bottlenecking and disentangling
(PIBD) method [20]. It introduces a disentanglement
mechanism to separate modality-specific versus shared
information. For PIBD, we restricted MOAB to a late fusion
setting, respecting PIBD’s initial modality-specific separation.

2) Ablation studies: we conducted three ablation experi-
ments to comprehensively evaluate MOAD-FNet. We first
removed the MOAB fusion block, using only ABMIL. Here,

pij served as the input to ABMIL, and the resulting feature
embedding vi was directly fed to the classifier layer to assess
the distinct impact of both ABMIL and the DNA modality. In
the second experiment, we removed the early fusion block
(illustrated in Fig. 1), making eij the input to the gated
attention block, which is then followed by MOAD-FNet. Last,
we employed a task-agnostic encoder ConvNext.v2 [37], pre-
trained on ImageNet, to extract features from the WSI and
tested MOAD-FNet with this setup. For the survival prediction
task, we evaluated the MOAD-FNet approach using the two
most common baseline fusion models: ABMIL [35] and Trans-
MIL [33]. We used the late fusion techniques: concatenation
and Kronecker product and compared these against MOAB
within both fusion settings.

C. Data and Code Availability
For brain tumor subtyping, we obtained data from NHNN

through a rigorous application process to BRAIN UK, securing
anonymized H&E slides of tissue samples and epigenetic data.
For survival prediction, WSIs are publicly available through
the TCGA repository, with corresponding omic data from [13].
Source code will be made available upon acceptance.

IV. RESULTS

Subtyping results. In Tables I and II, we present the
results for the subtyping task on the NHNN BRAIN UK
dataset. MOAD-FNet integrated with ABMIL consistently
demonstrates superior performance in brain tumor subtyping.
Specifically, Table I shows that the SNN model performs well
across metrics using omics-only data, achieving an F1-Macro
score of 0.726(±0.003), marginally outperforming the MLP.
In contrast, WSI-only models show relatively low performance
across metrics, with ABMIL achieving an F1-Macro of just
0.247(±0.004) and TransMIL performing slightly worse at
0.217(±0.019) likely due to the issue of indistinguishable pat-
terns between most subtypes and the presence of underrepre-
sented rare classes. These results indicate that omics data alone
offers strong predictive power, however further improvements
and interpretability are limited without incorporating WSI
data. On the other hand, multimodal models substantially out-
performed unimodal ones. For instance, ABMIL-MOAD-FNet
achieved the best scores across all metrics, with an F1-Macro
of 0.745(±0.025) and an F1-Micro of 0.820(±0.031). This
represents an improvement of 0.027 in F1-Macro compared to
the second-best multimodal model, TransMIL-MOAD-FNet,
further emphasizing the effectiveness of the MOAD-FNet
architecture in leveraging multimodal data for richer and more
informative representations. To assess statistical significance,
we performed a Wilcoxon rank-sum test [38] comparing
the F1-Macro scores of ABMIL-MOAD-FNet with all other
multimodal models in Table I. The test yielded a p-value
of 0.043, indicating a statistically significant difference at
the 0.05 significance level. These results demonstrate that
integrating MOAD-FNet with advanced multimodal archi-
tectures leads to significant performance gains over single-
stage fusion methods. This underscores the critical role of
dual fusion strategies in effectively combining complementary
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features from multiple modalities, ultimately driving superior
predictive accuracy and robustness.

TABLE I
SUBTYPING PREDICTION RESULTS ON THE NHNN UK BRAIN DATASET. WE

SHOW MOAD-FNET COMBINED WITH SOTA BASELINE MODELS. THE BEST

PERFORMANCE IS HIGHLIGHTED IN BOLD. CONCATENATION AND KRONECKER

PRODUCTS ARE DENOTED (CAT) AND (KP). THE GRAY ROWS CORRESPOND TO

MODELS INTEGRATING MOAD-FNET OR USING THE EARLY FUSION EMBEDDINGS

pij . THESE DEMONSTRATE IMPROVED PERFORMANCE COMPARED TO

STANDALONE BASELINE MODELS.

Model F1-Macro F1-Micro Precision Recall
Omics

SNN 0.726 (0.003) 0.819 (0.013) 0.799 (0.015) 0.715 (0.023)

MLP 0.690 (0.012) 0.794 (0.021) 0.741 (0.018) 0.684 (0.031)

WSI
ABMIL 0.247 (0.004) 0.442 (0.004) 0.280 (0.022) 0.026 (0.250)

TransMIL 0.217 (0.019) 0.434 (0.003) 0.240 (0.024) 0.230 (0.013)

Multimodal
ACMIL MOAD-FNet 0.501 (0.011) 0.729 (0.031) 0.602 (0.032) 0.490 (0.014)

TransMIL (Cat) 0.711 (0.005) 0.799 (0.005) 0.744 (0.003) 0.707 (0.002)

TransMIL (KP) 0.483 (0.003) 0.741 (0.016) 0.485 (0.007) 0.506 (0.008)

TransMIL MOAD-FNet 0.724 (0.005) 0.816 (0.002) 0.759 (0.009) 0.719 (0.001)

MCAT 0.402 (0.046) 0.661 (0.021) 0.408 (0.045) 0.414 (0.039)

MCAT pij 0.432 (0.015) 0.703 (0.017) 0.441 (0.031) 0.446 (0.011)

SURVPATH 0.424 (0.008) 0.697 (0.012) 0.478 (0.038) 0.425 (0.013)

SURVPATH pij 0.531 (0.008) 0.761 (0.008) 0.632 (0.005) 0.520 (0.007)

ABMIL (Cat) 0.718 (0.013) 0.806 (0.002) 0.764 (0.018) 0.717 (0.023)

ABMIL (KP) 0.447 (0.024) 0.737 (0.020) 0.481 (0.043) 0.464 (0.032)

ABMIL MOAD-FNet 0.745 (0.025) 0.820 (0.013) 0.769 (0.016) 0.745 (0.035)

Qualitative results shown in Fig. 5 further illustrate MOAD-
FNet’s effectiveness in classifying most tumor subtypes, show-
casing the strong impact of its intermingled features. To assess
class separation accuracy in the t-SNE representations we
calculated silhouette scores for early and late fusion, as they
displayed similar patterns. The late fusion t-SNE achieved
a silhouette score of 0.33, while MOAD-FNet scored 0.37,
indicating that it provides more accurate class separation. This
is also evident in the box plot in Fig. 4, where MOAD-FNet
displays fewer low outliers and a more compact distribution
than early and late fusion.

In Fig. 5A, we show the confusion matrix corresponding to
our model MOAD-FNet, while in Fig. 5B and C, we see the re-
sults for late and early fusion, respectively. These demonstrate
that our dual-fusion MOAD-FNet method excels in classifying
subtypes, especially for minority classes. Notably, classes 4,
9, and 13, which was misclassified with late fusion (Fig. 5B),
were correctly classified by MOAD-FNet. Conversely, late
fusion performed better for classes 2 and 16, highlighting the
challenges of handling heterogeneous multimodal data. This
also underscores the need for tailored fusion techniques to
address different data complexities. Furthermore, Fig. 4C1
and C2 illustrate that MOAD-FNet’s dual fusion approach
considerably enhances classification of all glioblastoma and
diffuse glioma subtypes, even in cases with highly overlapping
morphological features.

We present ablation results in Table II. The findings
highlight the necessity for advanced fusion techniques
to effectively integrate complementary features across
modalities. Notably, the full MOAD-FNet model achieved the
highest F1-Macro score of 0.745 (±0.035), demonstrating
a notable improvement over both early fusion, with a gain
of 0.101, and late fusion, with a gain of 0.055. Surprisingly,
the task-agnostic ConvNeXt encoder achieved an F1-Macro
of0.732 (±0.012), marginally lower than the pretrained UNI
encoder. This suggests that the core improvement in the

full model stems not from the backbone architecture but
from the dual fusion mechanism that effectively integrates
complementary features across modalities.

TABLE II
SUBTYPING PREDICTION ABLATION STUDY OF MOAD-FNET SHOWING THE

PERFORMANCE OF EARLY, LATE, AND DUAL FUSION METHODS USING THE NHNN
BRAIN UK DATASET.

Ablation Model Description F1-Macro
ABMIL Early fusion with pij 0.644 (0.010)

ABMIL - MOAB Late fusion with eij 0.690 (0.030)
MOAD-FNet ConvNeXt encoder 0.732 (0.012)
MOAD-FNet Full model 0.745 (0.035)

Survival prediction results. The results shown in Table III
demonstrate that integrating MOAD-FNet with existing SOTA
methods (indicated by *) derives consistent performance im-
provement compared to baseline models. For instance, our
approach achieves the highest c-index of 0.691(±0.069) for
BLCA and 0.726(±0.049) for BRCA, surpassing all other
methods in predicting patient disease-specific survival for
BLCA while performing on par with the top-performing model
MMP [22] for BRCA. Interestingly, the best results on BRCA
were obtained by PIBD with MOAB, achieving a strong c-
index of 0.749(±0.062) [22].

TABLE III
SURVIVAL PREDICTION RESULTS OF MOAD-FNET WITH BASELINES FOR

PREDICTING PATIENT DISEASE-SPECIFIC SURVIVAL USING THE C-INDEX. THE

BEST PERFORMANCE IS HIGHLIGHTED IN BOLD, AND THE SECOND-BEST

PERFORMANCE IS UNDERLINED. OVER FIVE RUNS, THE STANDARD DEVIATION IS

REPORTED IN BRACKETS. METHODS MARKED * ARE RE-IMPLEMENTED.

Model BLCA (↑) BRCA (↑)
WSI

ABMIL* [35] 0.572 (0.084) 0.573 (0.097)
TransMIL* [33] 0.579 (0.052) 0.611 (0.011)

Omics
MLP* 0.660 (0.060) 0.569 (0.084)
SNN* 0.671 (0.058) 0.574 (0.011)
S-MLP* 0.658 (0.053) 0.598 (0.014)

Multimodal
PIBD [20] 0.667 (0.061) 0.736 (0.072)
PIBD* - MOAB 0.684 (0.046) 0.749 (0.062)
MMP [22] 0.628 (0.064) 0.753 (0.096)
MMP [22] 0.635 (0.064) 0.738 (0.096)
ACMIL* - MOAD-FNet [23] 0.658 (0.068) 0.661 (0.082)
TransMIL* - MOAD-FNet 0.661 (0.053) 0.675 (0.068)
SurvPath [13] 0.625 (0.056) 0.655 (0.089)
SurvPath* - pij 0.660 (0.047) 0.665 (0.006)
MBFusion [19] −− 0.644 (0.020)
ED-GNN [24] −− 0.672 (0.059)
MoME [39] 0.686 (0.041) −−
MuGI [40] 0.681 (0.056) −−
ABMIL MOAD-FNet(Ours) 0.691 (0.069) 0.726 (0.049)

Note that we did not test MOAD-FNet with MMP [27]
because MMP already incorporates two early fusion stages
(transformer and optimal transport). Adding MOAB would
bring the total to four fusion stages, potentially introducing
additional complexity and noise without clear performance
benefits.

To further evaluate the effectiveness of MOAD-FNet in
the survival prediction task, we conducted additional ablation
studies presented in Table IV. The results demonstrate that the
ABMIL model with Dual Fusion (DF) consistently delivers su-
perior performance across both the BRCA and BLCA datasets,



8

Fig. 3. Visual representation of attention heatmap generated by MOAD-FNet for a diffuse glioma, IDH-mutant and 1p19q-retained (astroglial
type) tumor (Class 0). (A) The original histology slide is displayed. (B) The heatmap shows areas of high attention (red) and low attention (blue),
with regions of diagnostic relevance highlighted. (C) Representative patches with high attention are bordered in red, potentially indicating hallmark
features of astroglial differentiation and cellular atypia crucial for diagnosis. (D) Representative patches with low attention are bordered in blue,
reflecting regions of low tumor infiltration. The color bar illustrates the attention scale from high (red) to low (blue).

Fig. 4. Comparison of F1-scores across different fusion methods for glioma classification. The radar chart illustrates the F1-score performance
across all 20 classes, highlighting distinct patterns for Early Fusion, MOAD-FNet, and Late Fusion. The bar plots zoom in on specific glioblastoma
and glioma classes, showing class-level performance variations across fusion methods. The box plot provides a summary of F1-score distributions,
showcasing the variability and consistency of each fusion method.

TABLE IV
SURVIVAL PREDICTION ABLATION. COMPARISON OF C-INDEX FOR

TGGA BRCA AND BLCA DATASETS USING ABMIL AND TRANSMIL
MODELS WITH TWO FUSION STAGES, LATE (LF) AND DUAL (DF),

ACROSS THREE AGGREGATION METHODS.

BRCA c-index (↑)
Model Fus-S Cat KP MOAB

TransMIL LF 0.606 (0.064) 0.602 (0.089) 0.620 (0.115)
DF 0.623 (0.032) 0.645 (0.067) 0.675 (0.068)

ABMIL LF 0.625 (0.075) 0.616 (0.090) 0.711 (0.095)
DF 0.634 (0.023) 0.640 (0.058) 0.726 (0.049)

BLCA c-index (↑)
Model Fus-S Cat KP MOAB

TransMIL LF 0.599 (0.081) 0.582 (0.053) 0.600 (0.108)
DF 0.624 (0.068) 0.595 (0.052) 0.661 (0.053)

ABMIL LF 0.558 (0.082) 0.571 (0.063) 0.677 (0.054)
DF 0.622 (0.063) 0.561 (0.054) 0.691 (0.069)

particularly when paired with the MOAB aggregation method.
For the BRCA dataset, ABMIL-DF with MOAB achieves the
highest c-index of 0.726(±0.049), outperforming TransMIL-
DF with MOAB. Similarly, for the BLCA dataset, ABMIL-DF
with MOAB achieves the highest c-index of 0.691(±0.069),
surpassing TransMIL-DF with MOAB. The Late Fusion (LF)
results follow a similar pattern, with ABMIL consistently out-
performing TransMIL across all aggregation methods. These
findings underscore the effectiveness of ABMIL, particularly
with the Dual Fusion strategy and MOAB aggregation.

Limitations. While our method demonstrates promising
performance across multiple tasks, it’s important to acknowl-
edge some limitations. MOAD-FNet faces two primary chal-
lenges: first, balancing early and late fusion presents a trade-
off; although MOAD-FNet leverages both stages to capture the
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Fig. 5. Comparison of confusion matrices and t-SNE visualizations for three fusion strategies: (A) MOAD-FNet, (B) Late Fusion, and (C) Early
Fusion for brain tumor subtyping. The corresponding t-SNE plots are labeled as (A.1), (B.1), and (C.1), respectively.

strengths of each, finding the optimal balance can be complex,
with some cases exhibiting performance variations depending
on the fusion stage. Second, our late fusion block incorporating
MOAB operates on latent space vectors derived from the early
fusion stage, where omics features have already been blended.
Consequently, identifying the specific CpG feature with the
most profound impact on the outcome becomes challenging.

V. CONCLUSION

The MOAD-FNet framework advances CNS tumor sub-
typing by effectively integrating DNA methylation and WSI
data through a novel dual fusion approach. Our framework
addresses the under-explored potential of combining these
modalities, with the potential for distinguishing subtle mor-
phological differences between tumor subtypes from DNA
methylation profiling. The early fusion stage, implemented
through an MLP-based mapping of WSI and methylation
features, enables interpretable visualization while maintaining
low dimensionality. The late fusion stage, enriched by outer
arithmetic operations with MOAB, captures complex inter-
modal relationships beyond simple addition. MOAD-FNet
demonstrates superior performance across all evaluation met-
rics and exhibits robust scalability with different architectures.
The framework’s consistent success in both tumor subtyping
and survival prediction establishes its practical utility for
precision oncology. These results highlight how integration
of multiple data modalities can enhance diagnostic accuracy
while preserving clinical interpretability, thereby advancing
automated approaches to CNS tumor classification.
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